首页> 外文OA文献 >Underapproximation of Reach-Avoid Sets for Discrete-Time Stochastic Systems via Lagrangian Methods
【2h】

Underapproximation of Reach-Avoid Sets for Discrete-Time Stochastic Systems via Lagrangian Methods

机译:离散时间随机变量的Reach-avoid集的不相似性   系统通过拉格朗日方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We examine Lagrangian techniques for computing underapproximations offinite-time horizon, stochastic reach-avoid level-sets for discrete-time,nonlinear systems. We use the concept of reachability of a target tube in thecontrol literature to define robust reach-avoid sets which are parameterized bythe target set, safe set, and the set in which the disturbance is drawn from.We unify two existing Lagrangian approaches to compute these sets and establishthat there exists an optimal control policy of the robust reach-avoid setswhich is a Markov policy. Based on these results, we characterize the subset ofthe disturbance space whose corresponding robust reach-avoid set for the giventarget and safe set is a guaranteed underapproximation of the stochasticreach-avoid level-set of interest. The proposed approach dramatically improvesthe computational efficiency for obtaining an underapproximation of stochasticreach-avoid level-sets when compared to the traditional approaches based ongridding. Our method, while conservative, does not rely on a grid, implyingscalability as permitted by the known computational geometry constraints. Wedemonstrate the method on two examples: a simple two-dimensional integrator,and a space vehicle rendezvous-docking problem.
机译:我们研究了拉格朗日技术,用于计算离散时间非线性系统在有限时间范围内的近似逼近,随机达到避免水平集。我们在控制文献中使用目标管的可到达性概念来定义鲁棒的可避免范围集合,这些集合由目标集合,安全集合以及产生干扰的集合参数化。我们将两种现有的拉格朗日方法统一起来进行计算设置并建立了鲁棒到达避免集的最优控制策略,即马尔可夫策略。基于这些结果,我们描述了扰动空间的子集,该子集的扰动空间针对给定目标的相应鲁棒到达避免集和安全集是所关注的随机到达避免级别集的有保证的近似值。与传统的基于网格的方法相比,该方法极大地提高了获得近似随机避免水平集的近似效率的计算效率。我们的方法虽然保守,但不依赖于网格,这意味着已知计算几何约束所允许的可伸缩性。在两个示例上演示了该方法:一个简单的二维积分器和一个航天器交会对接问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号